Protein ADP-Ribosylation Takes Control in Plant–Bacterium Interactions
نویسندگان
چکیده
Sessile plants detect and ward off invading microorganisms with a robust and sophisticated innate immune system in addition to structural, physical, and chemical barriers [1]. The first line of the plant immune system depends on pattern-recognition receptors (PRRs) that recognize conserved pathogenor microbe-associated molecular patterns (PAMPs or MAMPs) and induce pattern-triggered immunity (PTI) [2]. To counteract this defense, pathogenic microbes have developed various virulence strategies, such as the bacterial type III secretion system (T3SS), through which bacteria inject a battery of effector proteins into plant cells to suppress host immunity and modulate host physiology [3]. Plants have, in turn, evolved intracellular NOD-like receptors (NLRs) that recognize effectors or effector-mediated changes and mount effector-triggered immunity (ETI) [1]. Recent studies show that protein ADP-ribosylation, an important yet less studied posttranslational modification with an emerging role in diverse cellular processes, is exploited both by plants to launch effective defense and by bacteria to achieve stealthy attacks to the hosts. Here, we summarize the classification and biochemical processes of protein ADP-ribosylation, compare the similarities and differences of ADP-ribosylation in plants and animals, and discuss the roles of ADP-ribosylation in plant immunity and bacterial pathogenicity.
منابع مشابه
ALTERATIONS OF ADP-RIBOSYLATION AND DNA-BREAKS IN AGING BRAIN CELLS
Neuronal and astroglial cells were prepared from whole brain of three month and 30-month- old rats for study of alterations in the nuclear poly ADP-ribosylation and DNA breaks with age. The relative purity of the cell preparations was confirmed by the determination of the neurofilament (low molecular weight) and glutamine synthetase content of the cells using ELISA. An increase (75%) in th...
متن کاملThe TITAN5 gene of Arabidopsis encodes a protein related to the ADP ribosylation factor family of GTP binding proteins.
The titan (ttn) mutants of Arabidopsis exhibit dramatic alterations in mitosis and cell cycle control during seed development. Endosperm development in these mutants is characterized by the formation of giant polyploid nuclei with enlarged nucleoli. Embryo development is accompanied by significant cell enlargement in some mutants (ttn1 and ttn5) but not others (ttn2 and ttn3). We describe here ...
متن کاملThe Toxin-Antitoxin System DarTG Catalyzes Reversible ADP-Ribosylation of DNA
The discovery and study of toxin-antitoxin (TA) systems helps us advance our understanding of the strategies prokaryotes employ to regulate cellular processes related to the general stress response, such as defense against phages, growth control, biofilm formation, persistence, and programmed cell death. Here we identify and characterize a TA system found in various bacteria, including the glob...
متن کاملThe role of ADP-ribosylation in regulating DNA interstrand crosslink repair
ADP-ribosylation by ADP-ribosyltransferases (ARTs) has a well-established role in DNA strand break repair by promoting enrichment of repair factors at damage sites through ADP-ribose interaction domains. Here, we exploit the simple eukaryote Dictyostelium to uncover a role for ADP-ribosylation in regulating DNA interstrand crosslink repair and redundancy of this pathway with non-homologous end-...
متن کاملRole of the N-terminal region in covalent modification of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase: comparison of phosphorylation and ADP-ribosylation.
The effect of cyclic AMP (cAMP)-dependent phosphorylation and ADP-ribosylation on the activities of the rat liver bifunctional enzyme, 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (PFK-2/FBPase-2), was investigated in order to determine the role of the N-terminus in covalent modification of the enzyme. The bifunctional enzyme was demonstrated to be a substrate in vitro for arginine-spec...
متن کامل